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Abstract

We discuss a framework for estimation of temporal trend for an evolv-
ing spatial field. The spatial field is regularly sampled in time at arbitrary
monitoring locations whose position may change over time. The estima-
tion of time-trend and the quantification of estimation error derives from
a probabilistic model. We illustrate with an example involving the surface
temperature field in the steppe region of eastern-Europe.

Keywords: Monitoring data, Multiple time series, Regional temperature
trend, Space-time modeling

1 INTRODUCTION

The problem of identifying a temporal trend in a space-time data set has
been accentuated by the global warming discussion. In this paper we propose
a framework for estimation of such a trend and a quantification of the associ-
ated estimation uncertainty. Historical surface temperature data will serve the
purpose of motivating our modeling assumptions and illustrating the approach.

More precisely we will consider a spatial field on a fixed region which is
evolving in time and for which we have discrete observations at regular time
intervals. Our objective is to estimate a temporal trend in the evolution of
the field, a trend which may vary with location. We will also estimate the
actual change in the regional average value of the evolving field over fixed time
intervals. The problem of a sampling configuration changing with time will be
explicitly considered.

The estimation relies on building a probabilistic model for the time evolving
field. The temporal trend, which may vary with location, is considered as a
realization of a spatially homogeneous stochastic field and overlays a residual
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component assumed to be stationary in space and time. In our example in-
volving surface temperature data we chose a climatically homogeneous region
wherein the spatial variability of the time-trend is relatively small. This region is
the steppe of eastern-Europe. Having defined the space-time variability model,
the estimators are the unbiased linear combinations of the observations which
minimize estimation error variance. The resulting error variance will depend on
the space-time data configuration.

Note that even though the quantities to be identified are modeled as random
we will use the estimation- rather than prediction-terminology throughout.

An important ingredient in the analysis is time-differencing of the original
data and direct modeling of time differences. For our example the one-year tem-
perature differences are the basic modeling element. The time-differenced field
is then regarded as stationary in space and time, and the problem of estimating
trend reduces to one of estimating a time-average.

The emphasis of this study is to derive a framework for trustworthy esti-
mation of the precision associated with the estimate of temporal trend of an
evolving surface temperature field. Statistical heterogeneity derives both from
the heterogeneity of variability of the underlying temperature field, due to re-
gional as well as seasonal effects, and from the varying density and geographic
configuration of the monitoring network. Due to the strong seasonal hetero-
geneity, different models will be derived for different seasons of the year.

The paper is organized as follows. The next section describes some statistics
of the data used in the example and serves to motivate the model and estimators
being derived in the following sections. The statistical model employed in the
analysis is described in Section 3. Estimators based on this model are derived in
Sections 4 and 5. The estimators are the unbiased linear estimators minimizing
error variance and are based on the yearly temperature differences. In Sections
6 and 7 various aspects of the structure of the sampling pattern are discussed.
We consider the case with a complete rectangular data panel in Section 7, that
is a fixed number of spatial sampling stations with no missing observations in
time. This enables us to derive simpler expressions for the estimator and their
standard errors as functions of number of years of observation. Section 8 uses
temperature data from the steppe region of eastern-Europe to illustrate the
approach. The illustration involves a monitoring network which is changing
over time. Section 9 contains some concluding remarks.

2 THE DATA

We chose the steppe region of eastern-Europe as a test bed for our analysis
and statistical modeling. The data are monthly averaged surface temperatures
at 24 monitoring sites. A map of the steppe region is shown in Figure 1. The
monitoring site locations within the rectangular study region, outlined by the



dashed line, are shown on the map. The period of the data covers years 1951-
1990. In addition to monthly data we created an annual surface temperature
time series at each monitoring site by averaging the monthly data for each year.
The raw data were obtained from Goddard Institute for Space Studies.

The monitoring stations were not all simultaneously active during the study
period. Figure 2 displays the missing pattern for the annually averaged data. If
at least one month’s observation is missing the average observation is taken to
be a missing data item. It is seen that a number of stations ceased to provide
information after 1970. Hence, the reality of a monitoring network changing
with time is certainly present in our test region.

Figure 3 shows three yearly time series corresponding to data from the most
westerly station. The solid lines correspond to annual observations for January
and July, whereas the dotted line is the annually averaged time series. These
time series show that there is a substantially larger inter-annual variability in the
winter than the summer months. Furthermore, the 40-year time-trend is small
relative to the inter-annual variability of the data for this site. The correlation
coefficient between the January and July observations, computed based on these
40 years, was .2. This suggests that the correlation between seasons is small.

We converted all time series to their annually differenced form. This removes
difficulties associated with choosing a baseline year for an evolving network
and also the problem of having to deal with a spatially varying temperature
mean field. The three time series presented in Figure 4 display the annually
differenced July data at the three monitoring stations marked with plus signs
in Figure 1. The dashed line corresponds to the most westerly station. We see
strong similarities between time series for nearby stations. A quantification of
such spatial structure in the data will obviously be an important ingredient in
the estimation schemes to be derived. Moreover, Figure 4 also suggests weak
inter-annual correlation.

Figure 5 shows annual time series which are averages taken over differences
at all monitoring sites. Separate annual series are shown for July, January and
year averages. What is remarkable, is that the amplitude of the inter-annual
variability is not much less than the corresponding amplitude for a time series
from a single station as seen, for example, in Figure 4. This reinforces the
suspicion that the spatial correlation structure is strong.

There will certainly be errors associated with the above data set. Among
these are instrumental errors which can be systematic or random. The random
instrumental errors associated with monthly averaged temperature recordings
are likely to be small in relation to other sources of variability. Systematic
instrumental errors arise from calibration problems and placement. Note, how-
ever, that a systematic error present over the temporal span of a temperature
time series is being removed when forming the differences.



3 THE MODEL

The goal of our analysis is to develop a statistical framework for quantify-
ing uncertainty in estimates of regional temperature time-trend as well as the
uncertainty of estimates of actual regional temperature changes over fixed time
periods. The proposed statistical framework will be able to handle a monitoring
network evolving in time.

The salient features of the steppe data are the strong spatial dependence and
the weak inter-annual correlation of the temperatures. Moreover, the variability
structure of the data shows a strong seasonal dependence. For this reason, the
temperature fields for different months of the year are modeled separately. The
quantity of prime interest, the temperature time-trend, is small compared to
the inherent variability of the data.

The space-time field for monthly averaged surface temperatures will be con-
sidered as a realization of a stochastic field. Models of the following type are
developed separately for each month to allow for seasonally-dependent statistics;
dependence on ‘month’ is suppressed in the notation

T(z,t) = po(x)+b(z)t+d(x,t), (3.1)

where

T(-,-) surface temperature,

z location index, taking values in a specified region D,
t year index,

1o(+) baseline temperature field, non-random,

b(-) temperature time-trend, a stochastic field second-order stationary and isotropic
in space,

0(-,-) space-time temperature residual, stochastic field with mean zero, second-
order stationary in space and time and isotropic in space.

We are assuming a prior geographical stratification into a set of regions
{D} which are more climatically homogeneous than the globe as a whole. The
purpose is to make the intraregion variation of the b(-) field relatively small, and
correspondingly for the probabilistic structure of the residual field 4(-,-). Note
that b(-) is an unknown spatially varying field and that we want to incorporate
uncertainty of this b field into the expressions for estimation errors. Therefore,
we model b as a stochastic field. The statistical modeling would be specific to



each geographic region D. Thus the stationarity statements above refer to the
domain D x E, with E a time interval containing the observations and in which
time-stationarity is assumed to hold.

We base the analysis on the year-to-year temperature differences rather than
on the temperatures themselves. This immediately reduces the question of time-
trend to one of estimation of an average level. Furthermore, heterogeneity
among different stations within the region is partially mitigated; there is no
need to choose a baseline time period or to estimate the baseline field uo(-).
The differences are defined by

d(z,t) = T(z,t)—T(z,t—1) (3.2)
= b(z) + R(z,1)

where

R(z,t) = 6(z,t)—8(z,t—1). (3.3)

In the next section we will derive estimators for the regional temperature
time-trend and also actual temperature changes for specified subregions and
time periods. We use unbiased linear combinations of the observations that,
given the model, minimize the variance of the estimation errors. In doing so, it
is in general advantageous to express error variances in terms of semivariograms
rather than covariance functions because covariance estimation require prelim-
inary estimation of mean values. The semivariogram of the b(-) field is defined
by

1/2E[(b(z) — b(z + Az))*] = m(|Az]). (3.4)

The semivariogram of the space-time temperature residual will be parameterized
as

1/2 E[(6(z,t) — 6(z + Az, t + At)’] = 7s(|Aa],|At]) (3.5)
= 05 {1-ps(|Az]) pr(|At))}.

The assumption that the correlation structure of the temperature residuals fac-
tors into spatial and temporal components, denoted ps(-) and pr(-) respectively,
simplifies the estimation problem. Proceeding without this assumption would
entail more general covariance expressions which are more difficult to estimate
from spatially sparse data. In Cressie (1992) this factorization assumption is
denoted separability. Moreover, assume that that the spatial cross-covariance
of the b and ¢ fields is time invariant. It then follows that the b(-) and R(-,-)
fields are uncorrelated.



The semivariogram of the difference field is thus found as

1/2 E[(d(z,t) — d(z + Az, t + At))2] = ~a(|Az|, |At]) (3.6)
= m(|Az|) + yr(|Az|, |At]).

The semivariogram yg(-,-) can, under the parameterization defined in (3.5), be
expressed as

vr(|Az|,|At)) = 1/2E[(R(x,t) — R(z + Az,t + At))?] (3.7)
= yr(|At]) + vs(|Az]) h(JAt]),
where
yr(|At)) = 1/2E[(R(z,t) — R(z,t + At))*] = o (1 — h(|At])),
vs(|Az|) = 1/2 E[(R(z,t) — R(z + Ax,1))’] = 0% (1 — ps(|Az|))
= (or/0s)?v5(|Az],0),
0% = B[R0 =202 (1 - pr(1)) (3.8)
= 27(0,1),
h(|At)) = {-pr(|At —1]) +2pr(|At]) — pr(|At +1])}/{2(1 - pr(1))}

= {15(0,]At —1[) — 275(0, |At[) +75(0, [At + 1) }/{275(0, 1) }.

From (3.6)-(3.8) it is seen that knowledge of the semivariogram-components
involved in the problem implies knowledge also of h(-), from which the covariance
structure of the R(-,-) field can be deduced. This is a further consequence of
the factorization assumption (3.5). The covariance structure of the b(-) field,
however, cannot be inferred from the semivariogram-components.

We now review briefly some of the related literature. An early paper by
Rodriguez-Iturbe and Mejia (1974) on the design of rainfall networks focused on
the problem of estimation of areal mean values, both for single time events and
for long-term averages. However, like the example which we use, they considered
space-time autocorrelation to be in factorable form. The methodological paper
of Stein (1986) also addresses the problem of estimating changes over time of a
spatial field in a more limited framework. However, like us, he uses the time-
differenced data statistics directly for the estimation of variograms. Stein uses
only concurrent data for interpolation of the time-differenced field and is not
involved with problems of missing data. On the other hand, Bilonick’s (1988)
paper on monthly acid deposition maps uses space-time variogram modeling
which does not operate directly on time-differenced data and therefore carries
along the additional variability of the original spatial mean field. The paper
by Rouhani (1990) and Rouhani et al. (1992) consider separately estimated



time-series models at each of the monitoring stations and decompose temporal
variability on several time scales. The principal focus of these papers is not on
regional estimation or spatial modeling but rather on the characterization of the
sampling sites. Also, the Handcock and Wallis (1994) analysis of meteorological
space-time fields used models which operate on the direct data rather than on
the differenced data. However, by using multivariate normality they were able
to incorporate uncertainty in variability parameters via a Bayesian calculation.
Observed changes in the spatial mean field were gauged against the posterior
uncertainty in the estimate of the mean field at a fixed time. Finally, the recent
work of Brown, Le and Zidek (1994) employs a Bayesian approach to incorporate
uncertainty in parameter estimates of the space-time models of autocovariance
and provides a method for propagating this uncertainty to error estimates for
the interpolated field. Their work is also based on multivariate normal modeling.

4 ESTIMATION OF TIME-TREND

Consider the problem of estimating the temperature time-trend averaged
over some subregion A C D (the subregion A could for example be the whole
region D or a single point in D). The estimate of the averaged time-trend,
m4, will be the unbiased linear combination of the available time differenced
monitoring data in the region D which minimizes the variance of the estimation
error. In accordance with the model assumptions given in the previous section
the difference field d(-,-) will be regarded as stationary over the time span of
the data. The regional time-trend and its estimator are defined by

ma = [ b dua), (4.1)
ma = idikiz)\Td, (4.2)

where

A C D the subregion of interest, with pu(A) = 1.

n number of observed temperature differences in D, indexed by i = 1,---,n,
d; = T(x;,t;) — T(z;,t; — 1) observed temperature difference,

z; location of difference observation i,

t; time of difference observation 1,

A; estimating coefficient for difference observation 4,

A={A1,..., )7 vector of coefficients,



d={dy,---,d,)T vector of observed temperature differences.

Under the stochastic model of Section 3, the unbiasedness criterion
E[n 4] = E[m 4] entails

doa o= 1L (4.3)

Using the fact that the \; coefficients sum to unity, we can express the
variance of the estimation error for the time-trend as Var[ma—1na] = AT C 4 A,
where C 4 is the relevant covariance matrix. The entries of the covariance matrix
can be found as

CA(i7j)
= E[{d; - /A b(z) dp(z)} {d; — /A b(z) dp(z)}]

= Bl{bas) - /A b(z) dyu() } {b(a) — /A b(z) du(z))]
+ E[R(zs, t;) R(zj,1;)] (4.4)
= —w(m— ) + /A i — ) dyu(z) + /A (|25 — 2]) dp(z)
- /A /A (| — ) dp(e) duy) — rles — o), |t — £5]) + 0%,
Note that the terms [, vy (|#; —#|) du(z) show that the centered b(-) field, b(z) —

J4b(y) du(y), is not a second order stationary field. Using this decomposition
we can express the estimation error variance as

Var[ma — ThA]

- —ZZA X (i — ) +2ZA/% 21 — o) dp(o)

//’yb |z —y|) du(z) du(y ZZ)\ N vr(|zi — x4, [ti — t;]) + 0%
= —ZZAM]’%(I%— +2Z)\ /fyb |z; — z|) du(x)
— [ [ e~y o) duty) (5)
Ala

+Y 0D XiAj ok = s (les = 25) h(jts — t5]).-

i=1 j=1



The error variance of the estimate of the time-trend of the whole region, mp,
is obtained by substituting D for A in the above expression.

If we want to estimate the time-trend at a certain location z, we let A shrink
to the point  such that the surface measure, du(z), becomes the point mass
measure. In this case the expression for the error variance turns into

Varmy — ] = =Y Y N Ajw(les — ) +2 ) Xiye(lzi — )
=1

i=1 j=1

n n
+ DD i 0k = vs(lzi — 2;)) (it = t5])- (4:6)
i=1 j=1
The ‘optimal’ coefficients, which minimize the variance of the estimation
error subject to the unbiasedness constraint, can be found using Lagrange mul-
tipliers. The error variance expressions given above can be written in the general
quadratic form

f) = AT A= 22T v + constant, (4.7)

where C and v are generic terms for a covariance matrix and vector respectively.
If there is no linear dependence between the observations, the covariance matrix
will be positive definite. In the nonsingular case, the minimizing X is

A = CHov+1(1-1TCctw)/aTCc 1)}, (4.8)

where 1 is the vector all of whose entries are one. Specific examples of estimators
of the above type, implicitly defined by an error variance expression, are found
in (4.5) and (4.6), and also in the next subsections.

5 ESTIMATION OF REGIONAL
TEMPERATURE CHANGE

Next we will consider estimating the average annual temperature change
over a given period of time averaged over a geographic area. As mentioned,
each month is treated separately and the dependence on month is suppressed
in the notation. The change per year from year t, to year t, averaged over the
subregion A is denoted

Ma(ta,ty) = /A (T2, t5) — T2, ta)} dpa(z) m™"

Il

tp
/Ab(x)du(a:)+ Z /AR(a:,t)du(a:)m_ (5.1)

t=t,+1



with m = ¢, — t,. As in the previous section, the estimator will be the unbiased
linear combination of the observed year-to-year temperature differences, which
minimizes the variance of the estimation error. The estimator will take the form

Ma(ta,ts) Zd Ni=ATd. (5.2)

The unbiasedness criterion forces the sum of the \;’s to be unity as be-
fore. Given this constraint, the variance of the estimation error for the regional
temperature change can be expressed as

Var[Ma(te, ts) — Ma(ta,ts)] = AT Calta,ts] A

where C 4[t,, 5] is a covariance matrix with entries

CA[ta;tb](iaj)
= Bl{b(w) ~ [ bo)dua)} (v(a,) - / b(o) du(o))]

+ E[{R(x;,t;) — Z / (z,t) du(z)m™'} -

t=t,+1

R(zj,t; Z /Ra: t) du(z) m=}]

t=t,+1

S (o /A w(Jz: — 2]) du(z) + /A (|25 — o) da(e)
- /A /A (| — y)) da(e) dp(y) — 1R (s — 251, b — t5])
/muwz—m it — tol) dps(n +/m 185 — 2, It — tal) dia(n)
A
/ / V(|5 — Tl |ty — t41) dia(n) dia(i), (5.3)

with
n = (z,t) reference in the space-time volume,

A=A® (t, +1,...,t) surface in the space-time volume, with u(A) = 1.

Using this decomposition we can express the estimation error variance in terms
of the semivariograms

10



Var[Ma(ta,ty) — Ma(ta, ty)]

= 3> Mn (- g +22A/% 21 — ) du(@)

i=1 j=1

//% |z — y|) du() du(y ZZ/\ X vr(|zi — 5, |t — t5])

i=1 j=1

+2Z/\/’YR |zi — ), [t — ty]) dus(n)

- /A /A V(|5 — T4ls |ty — t4]) dia(n) dia(i) (5.4)

and thereby get an expression for the unbiased minimum error variance esti-
mator. The error variance of the Mp(t,,t,) estimate, the actual temperature
change over the whole region, is obtained by letting A = D. If we restrict the
observations to be in the (¢,,t;) time window and constrain the estimation co-
efficients to sum to 1/m for each of the m years, the expression for the error
variance does not involve the temporal component of the semivariogram ~yr(-).
In this case, yr(]Az|, |At|) can be replaced by vs(|Az|) h(|At]) in (5.4).

To estimate the temperature change per year at a certain point,
{T(z,tp) — T(w,ts)} m~ !, we let A shrink to the point z. Doing this, the
expression for the error variance becomes

Var[M, (ta,tb) — My (ta,ts)]

= _ZZ,\ A (s — x5]) +22)\sz |lzi — )

i=1 j=1

—sz\i/\j’YR(|$i—$j|7|ti—tj|)+2Z Z Xive(|lzs — o, |t — t)) m™!

i=1 j=1 i=1 t=ta+1
ty ty
b > Y A=h(t—r))m
t=ta+1 7=ts+1

The estimating coefficients based on the above error variance expressions are
found as in (4.8).

6 MISSING DATA

Hitherto the estimate has been based on the one-year temperature differ-
ences. However, monitoring data typically have missing values and cannot be

11



represented in terms of one-year differences only. For example, if a time series
of yearly temperature observations at a certain spatial sampling station has a
missing data-item, two one-year differences will be left undefined when we do
the differencing. Therefore, if the i’th observed temperature corresponds to lo-
cation z; and time t;, and if the previous observation at the same location z;
occurred at time t; — k;, we define d; as

dz' = T(:Ez',ti) - T(:L'z', tz' - k‘z) (6.1)

We will show how to modify the error variance expressions for the estimates
discussed above according to this generalization in the definition of d;.

As in Section 4 we want to estimate the regional time-trend, but based on
general multi-year differences. The time-trend and its estimator are defined as
in (4.1) and (4.2). However, the unbiasedness criterion translates into

To simplify the derivation of the error variance expression, we introduce a
transformation matrix P such that

d = P'd (6.2)

where d is the vector of one-year differences assuming that there are no missing
data in the temperature time series at the different spatial sampling stations.
The i’th row of the transformation matrix PT will have k; unit entries in the
positions corresponding to the one-year differences comprising the multi-year
difference d;. For example, if we had observed the temperature field at two
stations over three years, and the first station had a missing observation in the
second year, the matrix PT would read

1 010
pT = |0 10 0], (6.3)
0001

assuming the one-year temperature differences in d are ordered with all spatial
sampling stations in year one first and then according to year.
The estimate can now be written as

ma = MNd=X"P"d
= 14,

12



and we get the desired expressions for the error variance simply by using the
covariance matrix obtained by the transformation P

Varlma —ma] = S\TCAS\
ATpPTCc, P (6.4)

Note that 3°7 , \; = 1, and that the entries of the relevant covariance matrix
are found by summing appropriate elements of C 4, defined as in (4.4).

The same procedure can be used in order to obtain the appropriate covari-
ance matrix in the case that there are missing data and we are estimating the
regional temperature change over a specified time period.

7 RECTANGULAR DATA PANEL

In this section we will assume a rectangular data panel, that is the index
set {i} of the data is representable by {i} = {j} x {k}, where {j} represents
uniformly spaced observation times and {k} represents the monitoring locations
having an arbitrary spatial distribution. The structure inherent in this pattern
makes the problem somewhat more amenable for analytic examination than the
general case. In order to elucidate some qualitative features of the estimation
error variance, and since the rectangular data panel formulation is of interest in
its own right, we will study it in some detail. In this context we examine how
the error variance depends upon the number of years of observation and on the
spatial sampling configuration. Furthermore, we compare the trend estimate
based on the direct data, the temperatures, with that based on the differences.
We will assume that there are no missing data in the data panel, however, cases
with missing data can in general be handled by modifying solutions associated
with structured systems; see the Appendix.

7.1 Regional Time-Trend Estimation

Let the observed differences be indexed as indicated above. Assume that we
are estimating the time-trend in a region A in the same way as above. In this
case we can write the error variance as a tensor product,

Var[mg — m 4]

Var[3 " Asblas) — / b(z) du(@)] + Var[3 A R(i, )]
i=1 A i=1
= M{11N e Cy A+ A"TH,, ® Cr A, (7.1)

where
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Hp(i,j) = hi—j)) 1<i,j<m,
CR(%J) = E[R(IL'“ t) R(SL'] ) t)]

Cyinj) = Bl{bl:) - / b(z) dpu(z) } {b(z;) — / b(z) d(2)}]
A A
= (s — ) + /A (|2 — 2]) du(z) + /A s — 2)) du(z)
- / / (|2 — yl) du(@) duly) 1< ij <1,
AJA

with
m number of observation years,
I number of spatial sampling stations,

n = m -l total number of observed differences.

It is assumed that the observations are ordered according to spatial location
and then according to year, hence {z;}!_, specify the locations of the spatial
sampling stations. The tensor form is a consequence of our assumption that
the covariance of the temperature residuals factors into spatial and temporal
components as specified in (3.5).

Suppose that we choose the coefficients as

A=A, (7.3)

with 3750 A j = 1 and 22:1 Az, = 1 (as shown below, if the intraregion
variation of the centered b(-) field is negligible, that is b(z) = b Vz € A, the
‘optimal’ coefficients are of this form). Such a factorization implies that the
coefficients at each station are found as A; scaled by A, ;, with );; being the
appropriate coefficient at station ¢ when m = 1. The expression for the error
variance can, given this factorization, be written

Var[ma — m 4]

l 1
Varl3 Aux blok) — /A b(z) du(@)] + Var[3" A Riak, )] AT Hyn Ay)

k=1
ACyde + AL CrA. (A Hp \y). (7.4)
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For the minimizing coefficients we have

TT}ETlmAZHmAt = Tr}i_l}looa};zVar[Zl)\t,jR(x,j)] (7.5)
iz
. 92 . _ . —2 _
< lim op VGT[ZIR(m,J)/m] = lim ogp”Var[(6(z,m) - 6(z,0))/m]
=
= 0.

Consequently, the attainable asymptotic precision is found as

l
lim Varfma —ina] = Var(3 e b(ow) — / b(z) dp(a)]
with A, minimizing the limiting variance expression. Hence, for a fixed set
of stations, the variability of the centered b(-) field limits the precision of the
regional time-trend estimate. This will also be the limiting error variance if we
observe temperature changes T'(x;,tp) — T(x;,t,) with ¢, —t, >t for any ¢ > 1
at each station ¢, but that we have an otherwise arbitrary missing pattern, since
we then effectively sample the b(-) field directly.

If we use only the net temperature change between the beginning and end
of the monitoring period, we reduce the data-set to one observation from each
station: T'(z;,t3) — T(zs,t,) 1 <i <I. Equivalently, we force Ay = 1m~!, and
the coefficients do not change with time. In this case the error variance becomes

Var[ma —ma] = AL CyAs + AL CrA; Hpm™2

where

Hon = _Z_Zh(u—ﬂ)-

Hence, the ‘cost’ in terms of increase in the mean square estimation error asso-
ciated with the constraint A\; = 1m~! is determined by the factor

Hmm™2) /)N HpX) = ATH,1m 2)(1TH, 1)

with A\¢ denoting the ‘optimal’ temporal coefficients given the factorization in
(7.3). If we assume the temperature residuals in different years are uncorrelated,

15



then the matrix H,, will be tridiagonal with 1’s on the diagonal and —1/2’s on
the first off diagonals. In this case, H,,, = 1, and the above factor is found to be
(m+1)(m+2)/(6m) ~m /6. Hence, the ‘cost’ factor grows linearly with the
number of years of observation. Moreover, in this specific case, the temporal
coefficients, A are found as

M = i{(m+1)—i}6/{m(m+1)(m+2)}, (7.6)

and the set of coefficients has an inverted parabolic shape.

As mentioned, the ‘optimal’ coefficients can be written as a tensor product
if b(z) = b Vz € A. This follows directly from the expression for the coefficients

A = H'eci'1/{1"H'ecCcy'1}
= {H,'1/A"H,'1)} & {Cy'1/(1" Cy' 1)}
= A @A, (7.7)

where A; are the ‘optimal’ coefficients we obtain if we have data from a single
station only. Similarly, A, are the ‘optimal’ coefficients obtained if data are
available at all stations for a single year. The computational burden of com-
puting ‘optimal’ coefficients is therefore significantly smaller than in the general
case.

Suppose we are interested in solving the ‘forward problem’, that is simulating
a realization of the temperature difference field from a given model. If we
simulate the field on a rectangular data panel, the tensor product form of the
covariance matrix can be used in order to ‘factor’ the simulation of the field

CA = Hm @ CR

= (LuLy)® (Lc LE)
(L @ Lo) (L @ LE)
LL”

with L denoting the Cholesky triangle. Hence, we need only decompose small
subsystems in order to solve the overall task. The above decomposition implies
that we can simulate each year independently and then combine the years as if
we were combining independent random variables in order to simulate a time
series of differences. If there is an exponential correlation structure in the time
dimension, h(At) = exp(—a|At|), the implied Markov property simplifies the
calculations even further. Note that these results generalize to higher dimen-
sions, for instance, if the correlation structure in the space dimensions factors
and the spatial data configuration is a rectangular grid.
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The analysis of space-time data is often performed by considering the lumped
time-series obtained by spatially averaging the data. For the considered prob-
lem, it follows from the above that this actually is ‘optimal’ in the case b(z) = b
provided the spatial average is taken as the one defined by the spatial coeffi-
cients A;. In fact, letting y; denote the spatial average in year i, the ‘optimal’
temporal coefficients , A, solve the univariate least squares regression problem

y = 1lb+e (7.8)

with b being the time-trend parameter to be estimated, y; the spatial average of
the differences in year ¢ and € a zero mean noise vector with correlation matrix
H,,, (assuming b(z) = b).

Consider now the problem of basing the time-trend estimate on the tempera-
tures themselves rather than the time-differenced temperatures. If we formulate
the linear regression problem in terms of all the temperatures in the rectangular
data panel the regression formulation is (retaining the previous notation)

1 0
1 1
y = @1[’2"]4”:
1 m
— Ho
= X@l[ ) ]+e (7.9)

where, in this case, the y;’s represent temperature observations and are ordered
in y according to station number and then year. Furthermore, we have assumed
a constant baseline temperature, po(x) = po, which is estimated simultaneously
in this formulation. The covariance matrix of € becomes that of the temperature
residuals: (05/0r)?H & Cg, where H is an (m+1) x (m+ 1) matrix defined by
H(i,j) = pr(|i — j]). The associated least squares coefficients can be expressed
as

A = H'XX"TH'X) " e{cz'117Ccz' )™}
= AOX (7.10)

with A; now being a (m+1) x 2 matrix. Hence, the coefficient of each parameter
estimate can be found as the tensor product of a set of space coefficients with
a set of temporal coefficients. The spatial coefficients are seen to be the same
as in the case with estimation based on time-differenced temperatures, whereas
the temporal coefficients solve the following least squares regression problem
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y = | . . [ e ] +e (7.11)
1 m
with y; the spatially averaged temperature in year i — 1, and the covariance

matrix of € being H. If H is diagonal the temporal coefficients of the b estimate
are

Ai(3,2) =12{(i —1) = m/2} / {m (m + 1) (m + 2)},

which translates into the coefficients given in (7.6) when the estimate is ex-
pressed in terms of the one-year temperature differences. Hence, the time-trend
estimates based on the differences and the temperatures respectively coincide.
This will be the case quite generally. For a time-trend estimator based on the
temperatures to be unbiased, the associated coefficients, A;, of the temperatures
must satisfy

i Aitz’ = 1,
i=1

where t; is observation time in years relative to a baseline year. Furthermore,
since the baseline temperature field under the model assumption is an unknown
parameter field, the weights associated with each spatial sampling location must
sum to zero. It follows that in the least squares formulation we minimize over the
same linear subspace of the temperatures, whether we base the estimate on the
temperatures or on the differences. Hence the estimates coincide. Note that if
we consider the baseline temperature field, uo(x), as a constant parameter or as
a stochastic field with known structure the estimates will in general not coincide.
However, typically for space-time problems, the cost of the additional constraint
associated with a priori forming the differences will be a low price to pay to
avoid having to deal with the baseline field. In the above example, we assumed
a constant baseline temperature, but the time-trend estimates coincided due
to symmetry in the temporal pattern of observations at each spatial sampling
station.

7.2 Regional Temperature Change Estimation

Using a rectangular data panel with ! monitoring sites and m observation times
we now estimate the actual regional temperature change over the period corre-
sponding to the time span of the data panel. Also in this problem the estimation
error variance can be specified in terms of a tensor product
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Var[Ma(ta, ts) — Ma(ta,ts)]

= Var[z A b(x;) — /Ab(l') dp(z)]

23

+Var[d AiR(wi t:) — > [ R(x,t)du(z)m "] (7.12)
i=1 t=tg+17 4
= MH{A1T) e CIAN+ A" H,, o CrA-22T (H ,1m )T + A

where m =ty — t, and Cp, H,, and Cg are defined as in (7.2). Furthermore,
Tisal x 1 vector and A a scalar, defined by

r(i) /A E[R(z:,1) R(z, )] dy(x),

A = [ [ EIRG. ) Rt duta) duty) o

If we reduce the data to the net total temperature change, T'(z;, ) —
T(z;,t,), i-e. forcing Ay = 1m™", the error variance becomes

Var[Ma(te,ts) — MA(taa tp)]

l
= Var[kgl /\z,k b(xk) — Ab(x) dﬂ(ﬂﬁ)]

l
+Var)y_ Aa Rl(wp,t) - / R(z,t) du(z)] Hpmm™2.
A

k=1

Thus, the time-dependent part of the error variance decays like H,,, m~2 with
respect to the number of years of observation. By the argument in (7.5)

lim,;, 00 Hrm m~2 = 0, hence
X 1
tbj}gm Var[Ma(te,ts) — Ma(ta,tp)] = Var[; Az, b(zk) — /A b(z) du(x)]

with A, minimizing the limiting variance expression.

In the case that the temperature time-trend is constant in A, b(-) = b, the
‘optimal’ coefficients can be expressed as A = m 1A, +v A B N, , where

Ay = C’}}1 T and v = 1 — 17 \,. Furthermore, with A; and X, being defined
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asin (7.7), and . being the ‘unconstrained minimizing coefficients’ obtained if
there are temperature differences available at all the stations for a single year
only. Substituting the expression for the ‘optimal’ coefficients in the expression
for the error variance we get

Var[MA ta,tb MA(ta;tb)]
= (/[ shoste - ) dua) duty) ~ T CF T}y
+ 2 (AT CrAT (A Hp ),

which displays the time-span dependence of the components of the error vari-
ance.

8 AN ILLUSTRATION

We now return to the data set from the eastern-European steppe region
introduced in Section 2 to illustrate calculations based on the model of Section 3.
Model parameters are identified in Section 8.1, the estimates of time-trend and
regional temperature change are presented in Section 8.2 along with a discussion
of precision and sensitivity. In accordance with the discussion in Sections 4 and
5 the following analysis will be based on the annually differenced time series.

8.1 Parameter Estimation

First we focus on the inter-station or spatial correlation structure described by
the spatial semivariogram functions 7;(-) and yg(-); defined in (3.6) - (3.8).
Aspects of this spatial structure are exhibited in Figure 6. Each dot in the
semivariogram scatter corresponds to a station pair, the argument being the
distance between the two locations. The vertical coordinate is calculated simply
as

Vig = 1/2 ) {d(est) —d(z;, )} /|Si4,

t€S; ;

where S; ; is the set of time indices for which differences are available at both
the station located at 2; and the one located at ;. The set has cardinality |S; ;|-
For each station pair this is a time-average of inter-station squared differences
when the data are the time differenced temperatures.

Note that V;; will be an unbiased estimator for v,(|Az|) + vs(|Az|), with
Az = x; — z;. Figure 6 shows the semivariogram scatter plots for January,
July and the annually averaged data. The solid lines in the plots are the fitted
model-semivariograms. In all cases a linear model semivariogram was chosen.
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It is seen that during summer there is less spatial variability in the tem-
perature field. The spatial correlation structure was checked with respect to
time-homogeneity and isotropy, which are both small effects in these data. More
elaborate models and estimation schemes for spatial variation, capturing such
effects as location dependent second order moments and anisotropy, are possi-
ble, see for instance Sampson and Guttorp (1992). However, for the present
example, taking note of the fact that we will be estimating regionally averaged
quantities, the above parameterization is believed to be adequate.

Next we turn to estimation of the semivariogram for the spatial modulation
of the trend field, b(-), which together with the above estimate define the spatial
semivariogram for the residual field R(-,-). Figure 7 is being used for explor-
ing the structure of the 7(-) semivariogram. The plots correspond to data in
January, July and the annually averaged data set respectively. Rather than
squaring spatial differences as above, for each station pair we formed products
of spatial differences between the stations when the differences were separated in
time by at least t,,;, years. Since the data analysis suggests that samples from
the residual field R(-,-) are uncorrelated when they are sufficiently separated in
time the product will be an unbiased estimator for v, (|Az|) , with Az = z; —z;,
if ¢4 is chosen large enough. In this example t,,,;, was chosen to be four. Each
station pair dot in the semivariogram scatter is obtained by using the distance
between the stations as argument, and its vertical coordinate is calculated as

Vi = 12 ) A{d(it) - d(z;, ) H{d(z:,?) — d(z;, £)}/15:4,

(t7aegi>.7'

where S; ; is the set of pairs (¢,%) such that: ¢, € S;; and [t — | > tpin-
As above S; ; is the set of time indices for which differences are available at
both stations. For each station pair, this is a time-average of products of inter-
station differences that are separated by at least t,,;, years when the data are
the time differenced temperatures. Since the estimate involves products, the
scatter also takes on negative values. The plot shows that v;(-) is relatively small
in magnitude compared to the corresponding vg(-) semivariogram. Assuming
a linear semivariogram model also for the b(-) field, it is seen from the error
variance expression (7.4), that a statement about smallness of v;(-) must be
made relative to the value of A = 0% (A H, \¢) = o (1T H,' 1)~'. For
the problem at hand, A = .0001 for the annually averaged data set. The
average value of the scatter in Figure 7 concerning the annually averaged data
is —.001. The noise in the scatter is large for an accurate estimate of the 7 (-)
semivariogram. However, for purposes of this illustration we take ,(-) = 0.
Hence, the vs(-) semivariograms are specified by the solid lines of Figure 6.

As shown by the previous plot the spatial structure in the temperature field is
strong. However, the analysis of Section 2 suggests that the temporal structure,
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exhibited by the function h(-) defined in (3.8), is rather weak. In order to
estimate h(-), the autocorrelations of the centered time series of differences at
each station were computed. Centering is with reference to the ‘average’ time
series derived by averaging the time series at the monitoring sites having no
missing data. The dotted lines in the plots of Figure 8 correspond to temporal
autocorrelations for each of the 27 monitoring stations, and the solid lines to the
simple mean over these. If «;(-) = 0, as we indeed have assumed, the solid line
will be an unbiased estimator of h(-). The similarity of the structure in the plot
with the pattern (h(0) h(1) h(2) h(3)---) =(1 —.500---), which corresponds
to the 4(-,-) residuals in different years being uncorrelated, is rather striking.
This particular pattern will also constitute our model assumption with respect
to temporal structure.

Recall the structure of the semivariogram for the temperature differences

a(|Az], [At]) w(|Az]) +y7(|At]) +vs(|Az]) A(|AL),
yr(At) = of (1-h(|At).

Having estimated 73(-) , vs(-) and h(-), we need only an estimate of yr(1) =
0% (1—h(1)) in order to obtain an estimate of the semivariogram for the temper-
ature differences. The quantity vyr(1) together with the estimate of h(-) define
our estimate of the temporal semivariogram component. The estimate of yr (1)
is defined by

Ar(1) = 12 ) {d(zit) - d(zit = 1)}?/|S],

(t,s)€S

where S is the set of time-location pairs for which temperature differences are
available in consecutive years. We have thereby formed the second order differ-
ences of the temperature time series and thus removed the effect of the linear
time-trend in order to enable estimation of the variance of the model residual.
The numerical values of the or estimates were 3.9, 1.6 and .8 degrees Celsius,
for the data in January, July and the annually averaged data respectively. The
variance of the annually averaged data is about 1/14 the value obtained aver-
aging those of January and July, which suggests that the temperature field has
a weak temporal correlation structure even on a month to month basis.

8.2 Numerical Results

Armed with the parameter estimates of the previous section, we are now able
to calculate actual temperature time-trend and change estimates for the steppe
region.
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We first estimated, for each month, the annual regional temperature changes,
Mp(t,t — 1), as defined in (5.2) for years 1952 — 1990. Due to the strong
spatial structure the regional time series so defined has qualitatively the same
behavior as the corresponding time-series at each station, though with a smaller
variability. In the month July these estimates were in the range —3 to 3 degrees
Celsius, and the associated estimated standard errors were approximately .1
degrees. Hence, we are able to estimate the regionally averaged temperature
changes with high degree of accuracy.

The regional temperature time-trend estimate and the associated standard
errors were calculated separately for the months January and July as well as
for the annual average. The results are .019 degrees Celsius +/ — .033 degrees
Celsius for January, —.013 degrees Celsius +/ — .013 degrees Celsius for July
and .012 degrees Celsius +/ — .007 degrees Celsius for the annually averaged
data. In view of the error estimates, we see that a warming trend cannot easily
be discerned from a ‘non-warming’ scenario.

If we had complete data for these 24 stations over a period of ~ 90 years,
the estimate of the annually averaged temperature time-trend would have a
standard error = .002 degrees Celsius for the eastern-European steppe region.
Note that this is under the assumption that v,(-) = 0. When this is not the case,
the error term associated with interpolating a spatially varying trend field will
dominate when sufficiently many years of data are being used in the estimation.

The estimates of uncertainty presented above are estimates given the model.
It is therefore of interest to examine the sensitivity of the uncertainty of the
temperature time-trend estimate to the model parameters. Specifically, we ex-
amine how the error variance expression for the time-trend in the rectangular
data-panel case depends on the model parameters. The expression for the error
variance is given in (7.4) and we take v,(-) = 0.

Consider first the sensitivity of the error variance with respect to the spatial
semivariogram, ys(-), as defined in (3.8). We will assume that the semivari-
ogram vs(-) is approximately linear for short distances and examine the sensi-
tivity with respect to the slope of the variogram. The factor 01_32 )\f CrA; =
01_32 ar 01}1 1)~! scales the error variance and the slope parameter is the only
parameter involved in its definition. Hence, this factor embodies the sensitivity
to the slope parameter. Define the relative slope to be the magnitude of the
semivariogram at 1000 km divided by the variance. When we increased the
relative slope parameter of the semivariogram vs(-) from .25 to .75, the square
root of the factor 0}32 )\: Cgr A, decreased approximately linearly from .96 to
.78. For these data, the relative slope was approximately .5. The sensitivity of
the factor 01_22 )\f CRr A\, to the slope estimate, given a linear model over the
chosen region, is thus rather modest.
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At this point it is of interest to examine how an alternative design for the
monitoring network affects the standard error of the temperature time-trend.
The alternative design involves a subset of five monitoring stations, chosen to be
dispersed in the region. These stations are those marked by ‘crosses’ in Figure
1. Changing the monitoring network only affects the factor 01}2 )\f CgrA; in
the error variance expression. The value of the square root of this factor was
.87 in the case with the alternative network design and .86 in the case with all
stations available.

Evidently, the estimate of the variance of the R(-,-) field, 0%, also scales the
error variance estimate, and is thus an important parameter. However, with
temperature residuals in different years being uncorrelated the precision of this
parameter estimate will be high.

Finally, in order to examine the sensitivity with respect to temporal correla-
tion structure, assume that the temperature residuals, §(-, ), are exponentially
correlated in time. That is pr(i) = p*, with the model assumption correspond-
ing to p = 0. The factor \] H,, A, = (17 H;;! 1)~! scales the error variance,
and under the model p is the only parameter involved in its definition, as is seen
from (3.8) and (7.2). In Figure 9 the numerical value of this factor has been
plotted on a square root scale as a function of number of years of observation
and for different values of p. We took p = 0, 1/3 and 2/3, corresponding to
h(1) = —1/2, —1/3 and —1/6, respectively. In the example considered, with 39
years of data, increasing the value of p from 0 to 1/3 approximately doubles the
standard error.

9 CONCLUSION

This paper sets forth a statistical framework for the analysis of time trends
of a spatial field observed periodically at fixed monitoring locations. We derive
estimators for a temporally and regionally averaged trend which allow for evolu-
tion of the monitoring network and incomplete data, and which take advantage
of the spatial-temporal statistics of the field. A probabilistic model leads to
estimates of statistical precision.

An illustration using temperature data from the steppe region of eastern-
Europe showed strong spatial structure and weak inter-annual temporal struc-
ture. Furthermore, a strong seasonal dependence was evident in the spatial
structure. Spatial heterogeneity in the time trend could not be detected. We
emphasize the assessment of the uncertainty associated with trend estimates.
Based on 40 years of temperature observations, we estimated the regional tem-
perature time-trend in eastern-Europe to be .012 degrees Celsius per year and
the associated standard error to be .007 degrees Celsius.
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APPENDIX: INCOMPLETE DATA PANEL

The calculation of coefficients in the case of a rectangular data panel with miss-
ing data involves solving a system of the form

PTCcPz =0, (A.1)

with C defined as in (4.4) and P having a structure as explained in (6.3).
The transformation matrix P will be the identity if there are no missing data.
When the correlation structure factors into spatial and temporal components
C will be a structured matrix, a block Toeplitz matrix as indicated in (7.1).
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Such structure calls for a fast linear systems solver. As shown in (7.7) the
tensor product form of C can be exploited when solving systems involving this
matrix. Furthermore, the temporal correlation matrix is Toeplitz and hence can
be solved by a version of the fast algorithms making use of this structure,

The system at hand is not block Toeplitz, but if the set of missing data is
a small subset of the data in the data panel, the transformed matrix will in a
sense be ‘close’ to a structured matrix. In this appendix we illustrate how to
exploit structure of the original system in the case with missing data using a
simple Schur complement like approach. Assume thus that the system defined
by the matrix C' can be solved in a particularly efficient manner, see for instance
Dietrich (1993) , and denote V = C~'. For ease of exposition, assume that P
has the form

P = HI‘,’O]. (A.2)

That is, all the missing data are associated with the last set of coefficients in
the full coefficient vector.
The corresponding decompositions of b and C ™" are denoted

b7 = [b b ],

Viu Vi ]

vV = . A3
|: V'{; sz ( )

As will be seen, only Va2 needs to be explicitly formed. The system (A.1) can

now be written

z, = Vubi +Viby
Poxy = Vb +Vab,,

where the auxiliary variable b~2, which satisfies by = POT 52, has been introduced.
After elimination of by the solution can be found as

T, = [V11 — Vi V2_21 V’f;] b, + V12V2_21 Py x, (A4)
xy = VPl Vy Vb + Vb,

with Vi = [P V5 Po] 1. Thus we need to solve systems defined by the
linear operators Vao and Pg V2_21 Py in addition to the original operator C.
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If the relative number of missing data is small this added computational cost
might be small compared to the reduction in cost resulting from having obtained
a full system which is structured. Note that if we do not introduce multi-year
increments, but rather deal with the problem of missing data by discarding the
one-year increments not being defined, the solution can be written as

x = [V —ViVy VL]b (A.5)
with C™' partitioned as in (A.3) and V22 being the block associated with the

missing data. In this case * = x;. This corresponds to applying the Schur
complement of Va5 to b.
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